Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
Más filtros

Medicinas Complementárias
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7994, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580687

RESUMEN

Cordyceps militaris (L.) Link (C. militaris) contains various beneficial substances, including polysaccharides (galactomannan), nucleotides (adenosine and cordycepin), cordycepic acid, amino acids, and sterols (ergosterol and beta-sitosterol). It also contains other essential nutrients, such as protein, vitamins (E, K, B1, B2, and B12), and minerals (potassium, sodium, calcium, magnesium, iron, zinc, and selenium). Due to the numerous health benefits of supplements and products containing C. militaris extract, their popularity has increased. However, the immunostimulant effect of C. militaris remains unclear. Therefore, this study developed a functional beverage from the submerged fermentation of C. militaris (FCM) and aimed to investigate the potential of FCM in healthy male and female volunteers in Phayao Province, Thailand. This study provides essential information for the development of healthy drink products. Healthy men and women were provided either FCM containing 2.85 mg of cordycepin or placebo for 8 weeks (n = 10 for each gender). The immune cell markers, immunoglobulins, and safety parameters were assessed initially at baseline and at 4 and 8 weeks. The NK cell activity markedly increased in the male FCM group from baseline (p = 0.049) to 4 weeks after receiving FCM. Compared with those in the placebo group, the NK activity in women who received FCM for 8 weeks significantly increased (p = 0.023) from baseline. Within-group analysis revealed that the IL-1ß levels were markedly reduced in the male FCM group (p = 0.049). Furthermore, the IL-6 levels decreased from baseline in the female FCM group (p = 0.047). The blood sugar, lipid, and safety indices were not different between the experimental groups. FCM can potentially be developed as an immune-boosting supplement without liver, kidney, or blood component toxicity.


Asunto(s)
Cordyceps , Adulto , Humanos , Masculino , Femenino , Cordyceps/química , Desoxiadenosinas/farmacología , Adenosina/metabolismo , Adyuvantes Inmunológicos/farmacología , Hígado , Inmunidad
2.
J Integr Med ; 22(2): 102-114, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494355

RESUMEN

Atherosclerosis is a leading cause of mortality and morbidity worldwide. Despite the challenges in managing atherosclerosis, researchers continue to investigate new treatments and complementary therapies. Cordyceps is a traditional Chinese medicine that has recently gained attention as a potential therapeutic agent for atherosclerosis. Numerous studies have demonstrated the effectiveness of cordyceps in treating atherosclerosis through various pharmacological actions, including anti-inflammatory and antioxidant activities, lowering cholesterol, inhibiting platelet aggregation, and modulating apoptosis or autophagy in vascular endothelial cells. Notably, the current misuse of the terms cordyceps and Ophiocordyceps sinensis has caused confusion among researchers, and complicated the current academic research on cordyceps. This review focuses on the chemical composition, pharmacological actions, and underlying mechanisms contributing to the anti-atherosclerotic effects of cordyceps and the mycelium of Ophiocordyceps spp. This review provides a resource for the research on the development of new drugs for atherosclerosis from cordyceps. Please cite this article as: Zhang Y, Liu SJ. Cordyceps as potential therapeutic agents for atherosclerosis. J Integr Med. 2024; 22(2): 102-114.


Asunto(s)
Aterosclerosis , Cordyceps , Humanos , Cordyceps/química , Células Endoteliales , Medicina Tradicional China , Aterosclerosis/tratamiento farmacológico , Apoptosis
3.
Int J Med Mushrooms ; 25(6): 41-54, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522532

RESUMEN

Cordyceps militaris is a medicinal and edible mushroom. Researchers often add exogenous substances to the culture medium to increase the active substance content in C. militaris. However, the effect of earth elements on the active substance content in C. militaris and its antioxidant effects have not been reported. In this study, the active substance content in C. militaris treated with lanthanum nitrate was determined using high-performance liquid chromatography and ultraviolet spectrophotometry, and the effect on the antioxidant capacity of C. militaris after lanthanum nitrate spraying was further explored. The results showed that, in the experimental concentration range, the two concentrations of 10 mg/L and 50 mg/L had a significant influence on the active substance content of C. militaris. When the concentration of lanthanum nitrate was 10 mg/L, the synthesis of pentostatin and cordycepin was promoted. When the concentration of lanthanum nitrate was 50 mg/L, it significantly promoted the synthesis of cordycepin, and the ferric-reducing power and DPPH· scavenging rate of C. militaris treated at this concentration were significantly higher than those of the control group. However, lanthanum nitrate had no significant effect on ergosterol synthesis (P > 0.05). Finally, considering that the residual amount of lanthanum in C. militaris and the residual amount of lanthanum in 50 mg/L lanthanum nitrate-treated C. militaris is within the allowable daily intake of 4.2 mg for humans, the optimal concentration of lanthanum nitrate-treated C. militaris is 50 mg/L.


Asunto(s)
Agaricales , Cordyceps , Humanos , Antioxidantes/farmacología , Lantano/farmacología , Cordyceps/química , Desoxiadenosinas/análisis
4.
J Nat Med ; 77(4): 986-991, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37515674

RESUMEN

Chinese cordyceps, also known as Dong-Chong-Xia-Cao, is widely recognized as a famous precious tonic herb, and used as traditional Chinese medicine for centuries. It is mainly used for regulating the immune system and improving functions of the lung and kidney, with anti-tumor, anti-inflammatory, and anti-diabetic activities. Due to its rarity and preciousness, a few chemical components are isolated and identified. Moreover, most of them are common chemical components and widely distributed in other natural resources, such as nucleosides, sterols, fatty acids, sugar alcohols, and peptides. Therefore, a large number of active substances of Chinese cordyceps is still unclear. During our search for chemical constituents of Chinese cordyceps, a new thiazole alkaloid, cordythiazole A (1), was isolated and identified. Its structure was elucidated by comprehensive spectroscopic analysis and single-crystal X-ray diffraction analysis. This is the first report of the presence of thiazole alkaloid in Chinese cordyceps, which adds a new class of metabolite of Chinese cordyceps. Furthermore, a putative biosynthesis pathway of cordythiazole A was proposed based on possible biogenic precursor, genes, and literatures. In addition, it showed α-glucosidase inhibitory activity with potency close to that of acarbose. The discovery of cordythiazole A with α-glucosidase inhibitory activity adds a new class of potential anti-diabetes ingredient in Chinese cordyceps.


Asunto(s)
Alcaloides , Antineoplásicos , Cordyceps , Cordyceps/química , alfa-Glucosidasas , Alcaloides/farmacología
5.
Int J Biol Macromol ; 240: 124377, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37044322

RESUMEN

In this study, EPS-Fe(III) complexes were synthesized, and their structural characteristics, thermal stability, antioxidant activity and digestive properties were evaluated. The content of iron in the EPS-Fe(III) complex was 6.34 ± 1.43 %. The absorbance bands of EPS and EPS-Fe(III) complexes were easily changed, indicating that iron ions can interact with the hydroxyl or carboxyl groups of EPS. Energy spectrometric analysis showed that a strong iron signal was observed in the EPS-Fe(III) complex. The IC50 values of the EPS-Fe(III) complex for DPPH, hydroxyl radical and ABTS were 1.52 mg/mL, 2.63 mg/mL and 1.20 mg/mL, respectively. Under oxidative stress, EPS-Fe(III) can prolong the lifespan of nematodes through the DAF-16 and SKN-1 pathways. Under the condition of gastric juice and intestinal juice, the iron content released from artificial intestinal juice reached 66 %. In addition, the negative effect of trypsin or polyphenols on the solubility of iron in EPS-Fe(III) digestive solution was lower than that in ferric chloride digestive solution. In conclusion, the EPS-Fe(III) complex can be used as a new type of iron supplement, which has good antioxidant activity, high stability and good water solubility.


Asunto(s)
Cordyceps , Hierro , Hierro/metabolismo , Compuestos Férricos/química , Antioxidantes/farmacología , Cordyceps/química
6.
Front Immunol ; 14: 1150287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37114040

RESUMEN

Background: Ophiocordyceps sinensis is well-known worldwide as a traditional medicine. An alternative natural source of O. sinensis is provided by mycelial cultivation. However, the bioactivities of cultured mycelial-enriched ß-D-glucan polysaccharides from a novel fungus O. sinensis OS8 are still unknown. Methods: We investigated the potential bioactivities via anticancer, antioxidant, and immunomodulatory polysaccharides (OS8P) produced from cultured mycelia of O. sinensis OS8. This strain is a novel fungus isolated from natural O. sinensis, which is further cultured by submerged mycelial cultivation for polysaccharide production. Results: The yield of mycelial biomass was 23.61 g/l, and it contained 306.1 mg/100 g of adenosine and 3.22 g/100 g of polysaccharides. This OS8P was enriched with ß-D-glucan at 56.92% and another form of α-D-glucan at 35.32%. The main components of OS8P were dodecamethyl pentasiloxane, 2,6-bis (methylthiomethyl) pyridine, 2-(4-pyrimidinyl)-1H-Benzimidazole, and 2-Chloro-4-(4-nitroanilino)-6-(O-toluidino)-1,3,5-triazine at the rates of 32.5, 20.0, 17.5, and 16.25%, respectively. The growth of colon cancer cells (HT-29) was significantly inhibited by OS8P, with IC50 value of 202.98 µg/ml, and encouraged apoptosis in HT-29 cells as confirmed by morphological change analysis via AO/PI and DAPI staining, DNA fragmentation, and scanning electron microscopic observations. In addition, significant antioxidant activity was demonstrated by OS8P through DPPH and ABTS assays, with IC50 values of 0.52 and 2.07 mg/ml, respectively. The OS8P also exhibited suitable immunomodulatory activities that significantly enhanced (P< 0.05) the induction of splenocyte proliferation. Conclusion: The OS8P enriched with ß-D-glucan polysaccharides and produced by submerged mycelial culture of a new fungal strain of O. sinensis OS8 strongly inhibited the proliferation of colon cancer cells without any cytotoxicity against normal cells. The potential effect of the OS8P on the cancer cells was due to the stimulation of apoptosis. Also, the OS8P exhibited good antioxidant and immunomodulatory activities. The results indicate that OS8P has promising applications in the functional food industry and/or therapeutic agents for colon cancer.


Asunto(s)
Cordyceps , Cordyceps/química , Glucanos , Antioxidantes/análisis , Polisacáridos/farmacología , Polisacáridos/análisis , Micelio/química
7.
Int J Med Mushrooms ; 25(2): 35-48, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36749055

RESUMEN

This study aimed to increase the yield of Cordyceps militaris intracellular polysaccharide (IPS) by adding elicitors. By comparing the effects of different elicitors on the IPS yield, three polysaccharide elicitors with significant promoting effect were screened out: Tween 80, pH, and vitamin B6 (VB6). We combined these elicitors and optimized the composition of the complex elicitor using response surface methodology to further improve the yield of IPS. The highest percentage of increased yield was 82.52 ± 0.48% obtained at a Tween concentration of 0.41% (w/v), pH of 4.98, and VB6 concentration of 0.17 mg/mL. Simultaneously, the mechanism of promoting high yield of IPS was preliminarily discussed. The complex elicitor may promote the synthesis of IPS by influencing the activity of polysaccharide synthase. Furthermore, the antibacterial activity against Staphylococcus aureus and Escherichia coli was evaluated. The addition of the complex elicitor increased the antibacterial activity of IPS. Therefore, our findings will lead the way for large scale industrial fermentations and commercial uses of IPS from C. militaris as antibacterial constituents.


Asunto(s)
Cordyceps , Cordyceps/química , Polisacáridos/farmacología , Óxido Nítrico Sintasa , Fermentación , Antibacterianos/farmacología
8.
Int J Biol Macromol ; 229: 507-514, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36603712

RESUMEN

Ophiocordyceps sinensis (syn. Cordyceps sinensis) is a valuable medicinal fungus in traditional Chinese medicine, and one or more polysaccharides are the key constituents with important medical effects. Glycogen as a functional polysaccharide is widely identified in eukaryotes including fungi. However, there is no definitive report of glycogen presence in O. sinensis. In this study, we carefully fractionated polysaccharides from cultivated caterpillar fungus O. sinensis, which were then characterized via methods for glycogen analysis. According to the results, 1.03 ± 0.43 % of polysaccharides were quantified via amyloglucosidase digestion in the whole cultivated caterpillar fungus, which had a typical spherical shape under transmission electron microscope with an average peak radius of 37.63 ± 0.57 nm via size exclusion chromatography and an average chain length of 12.47 ± 0.94 degree of polymerization via fluorophore-assisted capillary electrophoresis. Taken together, this study confirmed that the polysaccharides extracted form O. sinensis were mostly glycogen.


Asunto(s)
Cordyceps , Cordyceps/química , Medicina Tradicional China/métodos , Polisacáridos/farmacología , Glucógeno , Cromatografía en Gel
9.
Artículo en Inglés | MEDLINE | ID: mdl-36070448

RESUMEN

Cordyceps sinensis, as an expensive traditional Chinese medicine and edible fungus mycelium, lacks an effective quality evaluation method, especially and cultivated Cordyceps sinensis. In this study, a feasible workflow method was developed for traceability evaluation of wild and cultivated Cordyceps sinensis, based on mass spectrometry-based metabolomics. Mass spectrometry data were firstly acquired from Cordyceps sinensis, samples by liquid chromatography-quadrupole and time of flight mass spectrometry. Characteristic mass spectrometry peaks were extracted by applying the MZmine. Then significant markers were obtained from Cordyceps sinensis samples by orthogonal partial least square discriminant analysis. Then, identification of significant markers were identified by MS-FINDER data analytics. The results showed that Changdu, the other four wild origins (Naqu, Xinghai, Yushu and Guoluo) and cultivated samples could be significantly distinguished. This identified significant markers of Cordyceps sinensis, including 174 special significant markers for the wild samples, 204 special significant markers for the cultivated samples and 87 share significant markers. Number of 87 shared significant markers were identified in the wild and cultivated Cordyceps sinensis, especially 28 confident significant compounds, such as adenosine, riboflavin, tyrosine, arginine and glutamine. These shared significant markers might support the quality control of multi-targets of Cordyceps sinensis, compared with a single target in the Chinese Pharmacopoeia. The special significant markers indicated that cultivated Cordyceps sinensis was different from the wild based on mass spectrometry-based metabolomics. In the comparison of chromatographic fingerprint technology, it was found that the established feasible workflow method was easy to acquire significant markers and traceability of Cordyceps sinensis. This feasible workflow method has great potential to be successful for comprehensive and traceability evaluation of the wild and cultivated Cordyceps sinensis.


Asunto(s)
Cordyceps , Cordyceps/química , Flujo de Trabajo , Espectrometría de Masas , Metabolómica , Micelio/química
10.
Appl Microbiol Biotechnol ; 106(19-20): 6483-6491, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36109384

RESUMEN

Cordyceps spp. are widely healthy foods around the world with several traditional uses and bio-functionalities. The chemical characterization of ethyl acetate-soluble extract of the entomopathogenic fungus Cordyceps tenuipes NBRC 111,630 afforded two new metabolites with 1,6-dioxaspiro[4.4]nonane motif, tenuipesone A (1) and tenuipesone B (2), along with four well-known metabolites (3-6). The elucidation of the chemical structures was carried out via extensive spectroscopic experiments including FTIR, HRMS, 1D-NMR, and 2D-NMR. The probable biosynthetic pathway of 1 and 2 was hypothesized. From the six isolates, beauvericin (6) exhibited antimicrobial activity against Bacillus subtilis and Staphylococcus aureus with respective MIC of 6.25 and 12.5 µM. Docking results exhibited that beauvericin (6) has significant binding affinities against MurE and HK proteins with ΔG = - 8.021 and - 8.585 kcal/mol, respectively. KEY POINTS: • Six compounds, including two new, were isolated from the entomopathogenic fungus Cordyceps tenuipes. • Plausible biosynthetic pathway of compounds 1, 2, 4, and 5 was hypothesized. • Beauvericin (6) exhibited significant antimicrobial activity against Bacillus subtilis and Staphylococcus aureus alongside binding affinities against MurE and HK proteins in MOE study.


Asunto(s)
Antiinfecciosos , Cordyceps , Antibacterianos/química , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacillus subtilis , Biología Computacional , Cordyceps/química , Histidina Quinasa , Ligasas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Staphylococcus aureus
11.
Int J Med Mushrooms ; 24(9): 73-84, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36004711

RESUMEN

Jin-Chan-Hua, a traditional Chinese medicine with numerous pharmaceutical properties, is a biological complex of fungus and cicada larvae. In this study, the fungus Paecilomyces cicadae strain SH1 was obtained and cultivated to produce fruiting bodies in solid-state fermentation by using various cereals as base nutrients. The results indicated that 15 media (e.g., wheat, buckwheat, oatmeal, adzuki bean, black soybean, soybean, mung bean, speckled kidney bean, rice, millet, black glutinous rice, unpolished rice, peanut, pearl barley, and Job's tears) were favorable for high biomass or fruiting body production; thus, we conducted an anti-inflammatory assay in RAW 264.7 cells by using the fermented extracts of these substrates. Among the cereal substrates fermented with P. cicadae SH1, the alcohol extract of fermented oatmeal had the best anti-inflammatory ability with a dose-dependent effect, and it did not reduce the viability of RAW 264.7 cells at a concentration of 200 µg/mL. The results demonstrated that oatmeal solid-state fermented by P. cicadae SH1 has potential applications in the prevention or treatment of inflammation. To our knowledge, this study is the first to report on the development of functional foods and nutraceuticals through the solid-state fermentation of oatmeal by P. cicadae.


Asunto(s)
Cordyceps , Grano Comestible , Antiinflamatorios/farmacología , Cordyceps/química , Fermentación
12.
J Agric Food Chem ; 70(10): 3194-3206, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35238567

RESUMEN

Increasing attention focuses on the relationship between neuroinflammation and Alzheimer's disease (AD). The reports on the microbiota-gut-brain axis reveal that the regulation by gut microbiota is an effective way to intervene in neuroinflammation-related AD. In this study, two novel selenium peptides (Se-Ps), VPRKL(Se)M (Se-P1) and RYNA(Se)MNDYT (Se-P2), with neuroprotection effects were obtained from Se-enriched Cordyceps militaris. Se-P1 and Se-P2 pre-protection led to a 30 and 33% increase in the PC-12 cell viability compared to the damage group, respectively. Moreover, Se-Ps exhibited a significant pre-protection against LPS-induced inflammatory and oxidative stress in the colon and brain by inhibiting the production of pro-inflammatory mediators (p < 0.05) and malondialdehyde, as well as promoting anti-inflammatory cytokine level and antioxidant enzyme activity (p < 0.05), which may alleviate the cognitive impairment in LPS-injured mice (p < 0.05). Se-Ps not only repaired the intestinal mucosa damage of LPS-injured mice but also had a positive effect on gut microbiota dysbacteriosis by increasing the abundance of Lactobacillus and Alistipes and decreasing the abundance of Akkermansia and Bacteroides. Collectively, the antioxidant, anti-inflammatory, and regulating properties on gut microflora of Se-Ps contribute to their neuroprotection, supporting that Se-Ps could be a promising dietary supplement in the prevention and/or treatment of AD.


Asunto(s)
Cordyceps , Microbioma Gastrointestinal , Selenio , Animales , Cordyceps/química , Disbiosis/tratamiento farmacológico , Lipopolisacáridos/efectos adversos , Ratones , Enfermedades Neuroinflamatorias , Péptidos/farmacología , Selenio/química
13.
J Ethnopharmacol ; 291: 115126, 2022 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-35189280

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cordyceps sinensis (CS) is an herbal tonic in traditional Chinese medicine and is used to treat a wide range of disorders, including immune, kidney, respiratory, lung and cardiovascular diseases, in China. Most studies are focused mainly on nucleotides and polysaccharides from CS and consider them to be the main active ingredients, while other ingredients are often disregarded. Hundreds of sphingolipids have been identified from CS and showed inhibitory effects on mouse splenic lymphocytes. AIM OF THE STUDY: This study aimed to establish a method for preparing a fraction of sphingolipids from the mycelial powder of CS and evaluate its immunosuppressive activity. MATERIALS AND METHODS: Fraction of sphingolipids (Fr-SPLs) were prepared by silica gel chromatography and reversed-phase chromatography. Its components were identified and quantified by Quadrupole-Orbitrap UHPLC-MS/MS. PBMCs were prepared from human blood, and splenic lymphocytes, B cells, and T cells were prepared from mouse spleens. The inhibitory effect of Fr-SPLs on cell viability was evaluated by CCK-8 assay. PBMC apoptosis and the ratio of CD4+ T cells and CD8+ T cells were quantified by flow cytometry analysis. The expression of IL-2, IL-10, and TNF-α in PBMCs was detected by ELISA kits. RESULTS: A fraction containing 84.83% of sphingolipids (SPLs) was prepared from the mycelia of CS and named Fr-SPLs. 15 SPLs were identified from the Fr-SPLs. Fr-SPLs significantly inhibited the viability of human peripheral blood mononuclear cells (PBMCs) with an IC50 value of 9.82 µg/mL and promoted PBMC apoptosis in a dose-dependent manner. Moreover, Fr-SPLs inhibited the viability of mouse splenocytes, as well as that of B cells and T cells derived from splenocytes. Furthermore, Fr-SPLs reduced the production of IL-2, IL-10, and TNF-α in PBMCs. CONCLUSIONS: Fr-SPLs show immunosuppressive activity, and this study will be useful for preparing immunosuppressive components from CS and its mycelia for hyperimmune disease.


Asunto(s)
Cordyceps , Animales , Linfocitos T CD8-positivos , Cordyceps/química , Leucocitos Mononucleares , Ratones , Esfingolípidos , Espectrometría de Masas en Tándem
14.
Zhongguo Zhong Yao Za Zhi ; 47(2): 403-411, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35178982

RESUMEN

Based on ITS sequences, the molecular identification of Cordyceps cicadae and Tolypocladium dujiaolongae was carried out, and high-performance liquid chromatography(HPLC) fingerprint combined with chemical pattern recognition method was established to differentiate C. cicadae from its adulterant T. dujiaolongae. The genomic DNA from 10 batches of C. cicadae and five batches of T. dujiaolongae was extracted, and ITS sequences were amplified by PCR and sequenced. The stable differential sites of these two species were compared and the phylogenetic tree was constructed via MEGA 7.0. HPLC was used to establish the fingerprints of C. cicadae and T. dujiaolongae, and similarity evaluation, cluster analysis(CA), principal component analysis(PCA), and partial least squares discriminant analysis(PLS-DA) were applied to investigate the chemical pattern recognition. The result showed that the sources of these two species were different, and there were 115 stable differential sites in ITS sequences of C. cicadae and T. dujiao-longae. The phylogenetic tree could distinguish them effectively. HPLC fingerprints of 18 batches of C. cicadae and 5 batches of T. dujiaolongae were established. The results of CA, PCA, and PLS-DA were consistent, which could distinguish them well, indicating that there were great differences in chemical components between C. cicadae and T. dujiaolongae. The results of PLS-DA showed that six components such as uridine, guanosine, adenosine, and N~6-(2-hydroxyethyl) adenosine were the main differential markers of the two species. ITS sequences and HPLC fingerprint combined with the chemical pattern recognition method can serve as the identification and differentiation methods for C. cicadae and T. dujiaolongae.


Asunto(s)
Cordyceps , Cromatografía Líquida de Alta Presión/métodos , Cordyceps/química , Cordyceps/genética , Hypocreales , Filogenia
15.
Pharm Biol ; 60(1): 225-234, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35068295

RESUMEN

CONTEXT: Cordyceps militaris and Isaria tenuipes (Cordycipitaceae) are high-value fungi that are used for health-promoting food supplements. Since laboratory cultivation has begun for these fungi, increased output has been achieved. OBJECTIVE: This study compared the chemical profiles, antioxidant, anti-tyrosinase, and skin extracellular matrix degradation inhibition between mycelium and fruiting body of C. militaris and I. tenuipes. MATERIALS AND METHODS: The antioxidative potential of 10% v/v aqueous infused extract from each fungus was separately investigated using 2,2-azinobis(3-ethylbenzo-thiazoline-6-sulphonic acid) (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing antioxidant ability, and ferric thiocyanate methods. The inhibition against MMP-1, elastase, and hyaluronidase were determined to reveal their anti-wrinkle potential. Anti-tyrosinase activities were determined. RESULTS: C. militaris and I. tenuipes extracts were found to contain a wide range of bioactive compounds, including phenolics, flavonoids, and adenosine. A correlation was discovered between the chemical compositions and their biological activities. The extract from I. tenuipes fruiting body (IF) was highlighted as an extraordinary elastase inhibitor (IC50 = 0.006 ± 0.004 mg/mL), hyaluronidase inhibitor (IC50: 30.3 ± 3.2 mg/mL), and antioxidant via radical scavenging (ABTS IC50: 0.22 ± 0.02 mg/mL; DPPH IC50: 0.05 ± 0.02 mg/mL), thereby reducing ability (EC1: 95.3 ± 4.8 mM FeSO4/g extract) and lipid peroxidation prevention (IC50: 0.40 ± 0.11 mg/mL). IF had a three-times higher EC1 value than ascorbic acid and significantly higher elastase inhibition than epigallocatechin gallate. DISCUSSION AND CONCLUSIONS: IF is proposed as a powerful natural extract with antioxidant and anti-wrinkle properties; therefore, it is suggested for further use in pharmaceutical, cosmeceutical, and nutraceutical industries.


Asunto(s)
Antioxidantes/farmacología , Cordyceps/química , Inhibidores Enzimáticos/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Animales , Antioxidantes/administración & dosificación , Antioxidantes/aislamiento & purificación , Ácido Ascórbico/farmacología , Catequina/análogos & derivados , Catequina/farmacología , Bovinos , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/aislamiento & purificación , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Depuradores de Radicales Libres/administración & dosificación , Depuradores de Radicales Libres/aislamiento & purificación , Depuradores de Radicales Libres/farmacología , Cuerpos Fructíferos de los Hongos , Concentración 50 Inhibidora , Micelio , Piel/efectos de los fármacos , Piel/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Porcinos
16.
Int J Biol Macromol ; 193(Pt B): 1274-1285, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34757129

RESUMEN

Cordyceps militaris is a well-known traditional Chinese medicine. Studies have demonstrated that the polysaccharides of C. militaris have various bioactivities. However, their mechanisms of action remain unclear. We previously purified a water-soluble polysaccharide CM1 from C. militaris and found that it has a cholesterol efflux improving capacity. This study further investigates the effect of CM1 in anti-atherosclerosis and its underlying mechanism in apolipoprotein E-deficient mice. Our data indicated that CM1 significantly decreased the total cholesterol and triglyceride in the plasma of mice, and decreased lipid deposition and formation of atherosclerotic plaque in a dose-dependent manner. Integrated bioinformatics analysis revealed that CM1 interacted with multiple signaling pathways, including those involved in lipid metabolism, inflammatory response, oxidoreductase activity and fluid shear stress, to exert its anti-atherosclerotic effect. Molecular technology analysis showed that CM1 enhanced the expression of proteins involved in lipid metabolism, reduced the expression of intercellular adhesion molecule-1 and tumor necrosis factor-α in the aorta, and decreased the content of oxidative products by enhancing the activities of antioxidant enzymes. Microarray analysis and biochemical data indicated that CM1 can improve lipid metabolism, reduce inflammation and oxidative stress. Taken together, CM1 could be used for the treatment of hyperlipidemia and atherosclerotic cardiovascular diseases.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Cordyceps/química , Polisacáridos/farmacología , Animales , Antioxidantes/farmacología , Aorta/efectos de los fármacos , Aorta/metabolismo , Aterosclerosis/metabolismo , Biología Computacional , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
17.
J Diabetes Res ; 2021: 5477941, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621904

RESUMEN

OBJECTIVE: To systematically study the mechanism of cordyceps cicadae in the treatment of diabetic nephropathy (DN) with the method of network pharmacology and molecular docking analysis, so as to provide theoretical basis for the development of new drugs for the treatment of DN. METHODS: TCMSP, Symmap, PubChem, PubMed, and CTD database were used to predict and screen the active components and therapeutic targets for DN. The network of active components and targets was drawn by Cytoscape 3.6.0, the protein-protein interaction (PPI) was analyzed by the STRING database, and the DAVID database was used for the enrichment analysis of intersection targets. Molecular docking studies were finished by Discovery Studio 3.5. RESULTS: A total of 36 active compounds, including myriocin, guanosine, and inosine, and 378 potential targets of cordyceps cicadae were obtained. PPI network analysis showed that AKT1, MAPK8, and TP53 and other targets were related to both cordyceps cicadae and DN. GO and KEGG pathway analysis showed that these targets were mostly involved in R-HSA-450341, 157.14-3-3 cell cycle, and PDGF pathways. Docking studies suggested that myriocin can fit in the binding pocket of two target proteins (AKT1 and MAPK8). CONCLUSION: Active ingredients of cordyceps cicadae such as myriocin may act on DN through different targets such as AKT1, MAPK8, and TP53 and other targets, which can help to develop innovative drugs for effective treatment of DN.


Asunto(s)
Productos Biológicos/uso terapéutico , Cordyceps/química , Nefropatías Diabéticas/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Humanos , Medicina Tradicional China , Mapas de Interacción de Proteínas
18.
Molecules ; 26(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641308

RESUMEN

Colorectal cancer is one of the leading causes of cancer-related death in Thailand and many other countries. The standard practice for curing this cancer is surgery with an adjuvant chemotherapy treatment. However, the unfavorable side effects of chemotherapeutic drugs are undeniable. Recently, protein hydrolysates and anticancer peptides have become popular alternative options for colon cancer treatment. Therefore, we aimed to screen and select the anticancer peptide candidates from the in silico pepsin hydrolysate of a Cordyceps militaris (CM) proteome using machine-learning-based prediction servers for anticancer prediction, i.e., AntiCP, iACP, and MLACP. The selected CM-anticancer peptide candidates could be an alternative treatment or co-treatment agent for colorectal cancer, reducing the use of chemotherapeutic drugs. To ensure the anticancer properties, an in vitro assay was performed with "CM-biomimetic peptides" on the non-metastatic colon cancer cell line (HT-29). According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results from peptide candidate treatments at 0-400 µM, the IC50 doses of the CM-biomimetic peptide with no toxic and cancer-cell-penetrating ability, original C. militaris biomimetic peptide (C-ori), against the HT-29 cell line were 114.9 µM at 72 hours. The effects of C-ori compared to the doxorubicin, a conventional chemotherapeutic drug for colon cancer treatment, and the combination effects of both the CM-anticancer peptide and doxorubicin were observed. The results showed that C-ori increased the overall efficiency in the combination treatment with doxorubicin. According to the acridine orange/propidium iodine (AO/PI) staining assay, C-ori can induce apoptosis in HT-29 cells significantly, confirmed by chromatin condensation, membrane blebbing, apoptotic bodies, and late apoptosis which were observed under a fluorescence microscope.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Cordyceps/química , Doxorrubicina/farmacología , Proteínas Fúngicas/química , Peptidomiméticos/farmacología , Antineoplásicos Fitogénicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Simulación por Computador , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Aprendizaje Automático , Peptidomiméticos/química , Transducción de Señal/efectos de los fármacos
19.
Molecules ; 26(19)2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34641520

RESUMEN

Immunotherapy harnessing immune functions is a promising strategy for cancer treatment. Tumor sensitization is one approach to enhance tumor cell susceptibility to immune cell cytotoxicity that can be used in combination with immunotherapy to achieve therapeutic efficiency. Cordycepin, a bioactive compound that can be extracted from some Cordyceps spp. has been reported to effectively inhibit tumor growth, however, the mechanism of its tumor sensitization activity that enhances immune cell cytotoxicity is unknown. In the present study, we investigated the potency of cordycepin to sensitize a lethal cancer, cholangiocarcinoma (CCA), to natural killer (NK) cells. Treatment with cordycepin prior to and during co-culturing with NK-92 cells significantly increased cell death of KKU-213A as compared to solitary cordycepin or NK treatment. Moreover, sensitization activity was also observed in the combination of NK-92 cells and Cordyceps militaris extract that contained cordycepin as a major component. The cordycepin treatment remarkably caused an increase in TRAIL receptor (DR4 and DR5) expression in KKU-213A, suggesting the possible involvement of TRAIL signaling in KKU-213A sensitization to NK-92 cells. In conclusion, this is the first report on the sensitization activity of cordycepin on CCA cells to NK cytotoxicity, which supports that cordycepin can be further developed as an alternate immunomodulating agent.


Asunto(s)
Neoplasias de los Conductos Biliares/tratamiento farmacológico , Colangiocarcinoma/tratamiento farmacológico , Cordyceps/química , Desoxiadenosinas/farmacología , Células Asesinas Naturales/inmunología , Antineoplásicos Fitogénicos/farmacología , Neoplasias de los Conductos Biliares/patología , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Células Asesinas Naturales/efectos de los fármacos , Extractos Vegetales/farmacología , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Receptor fas/genética
20.
Biomed Pharmacother ; 142: 111885, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34385104

RESUMEN

Cordyceps sinensis, including Hirsutella sinensis, is a highly valuable traditional Chinese medicine and is used to treat patients with pulmonary heart disease in clinical practice. However, the underlying mechanisms of its effects remain unclear. In this study, a mouse model of heart failure established by non-thoracic, transverse aortic constriction (TAC) was developed to determine the underlying mechanisms of therapeutic effects of Hirsutella sinensis fungus (HSF) powder. The results showed that HSF treatment remarkably ameliorated myocardial hypertrophy, collagen fiber hyperplasia, and cardiac function in mice with heart failure. Using transcriptional and epigenetic analyses, we found that the mechanism of HSF mainly involved a variety of signaling pathways related to myocardial fibrosis and determined that HSF could reduce the levels of TGF-ß1 proteins in heart tissue, as well as type I and III collagen levels. These data suggest that HSF alleviates heart failure, inhibits irreversible ventricular remodeling, and improves cardiac function through the regulation of myocardial fibrosis-related signaling pathways, which can provide novel opportunities to improve heart failure therapy.


Asunto(s)
Cardiotónicos/farmacología , Cordyceps/química , Insuficiencia Cardíaca/tratamiento farmacológico , Preparaciones de Plantas/farmacología , Animales , Aorta Torácica/diagnóstico por imagen , Aorta Torácica/cirugía , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Cardiomegalia/patología , Cardiotónicos/uso terapéutico , Constricción Patológica/complicaciones , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Fibrosis/tratamiento farmacológico , Fibrosis/genética , Fibrosis/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/patología , Ligadura , Masculino , Ratones Endogámicos C57BL , Preparaciones de Plantas/uso terapéutico , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA